Search results for " Additive Manufacturing"

showing 10 items of 14 documents

Microstructural characterization of a 3D-printed soil

2022

Transversal applications of 3D-printing (or Additive Manufacturing) have been recently implemented in the field of Geomechanics. In a 3D-printing process, the printed volume is obtained from successive layering of adjacent soil filaments. In this work, the fabric of an as-printed soil has been carried out by combining Mercury Intrusion Porosimetry (MIP) tests and Scanning Electron Microscope (SEM) observations, with the aim to highlight how the particle arrangements and the orientation and shape of pores are linked to the printing operation. The microstructural analyses showed that macropores are the result of the relative position of the filaments and their initial distortion in quasi-undr…

3D-printingSoil fabricSettore ICAR/07 - GeotecnicaSoil additive manufacturingGeotechnical Engineering and Engineering GeologySoil extrusion
researchProduct

Towards criteria for sustainable process selection: On the modelling of pure subtractive versus additive/subtractive integrated manufacturing approac…

2017

Additive Manufacturing (AM) processes can be counted among the disruptive technologies that are capable of transforming conventional manufacturing routes. The ability to create complex geometries, the reduction in material scraps during manufacturing, and the light-weighting due to the think-additive redesign of the components represent the main points of strength of AM. However, for some applications (such as the production of metal components for the automotive and aerospace industries), the surface finishing and dimensional/geometrical part tolerancing that can be achieved via AM processes might not be adequate to satisfy the imposed product specifications, and finish machining operation…

0209 industrial biotechnologyEngineeringAdditive manufacturing; CNC machining; Metal component; Modelling; Sustainable manufacturing; Renewable Energy Sustainability and the Environment; 2300; Strategy and Management; 1409; Tourism Leisure and Hospitality Management; Industrial and Manufacturing EngineeringAdditive manufacturingProcess (engineering)Strategy and ManagementSustainable manufacturingAutomotive industryContext (language use)02 engineering and technology010501 environmental sciencesMetal component01 natural sciencesModellingIndustrial and Manufacturing EngineeringTourismCNC machining020901 industrial engineering & automationMachiningComputer-integrated manufacturingAdvanced manufacturingRenewable Energy1409Settore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneSustainable manufacturing Modelling Additive manufacturing CNC machining Metal component0105 earth and related environmental sciencesGeneral Environmental ScienceProduct design specificationSustainability and the Environment2300Renewable Energy Sustainability and the Environmentbusiness.industryLeisure and Hospitality ManagementBuilding and ConstructionManufacturing engineeringNumerical controlbusinessJournal of Cleaner Production
researchProduct

Improving surface integrity of additively manufactured GP1 stainless steel by roller burnishing

2020

Abstract Additive manufacturing can rapidly fabricate the desired components by selectively melting and solidifying feedstock, rather than conventional subtractive machining. However, the difference between the two routes in terms of surface integrity of the final component is relevant. This paper presents a strategy to control the surface characteristics of additively manufactured stainless steel by roller burnishing. In particular, process parameters have been carefully selected to improve the surface integrity of the worked material. The quality of the surface has been analyzed in terms of roughness, hardness, microstructure and residual stresses. The overall product endurance under high…

0209 industrial biotechnologyMaterials scienceMechanical EngineeringMetallurgyFatigue testing02 engineering and technologySurface finishRoller burnishingRaw materialMicrostructureSurface integrity Additive manufacturing Roller burnishingIndustrial and Manufacturing Engineering020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringMachiningResidual stressSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneSurface integrityCIRP Annals
researchProduct

The Role of re-design for Additive Manufacturing on the Process Environmental Performance

2018

Abstract At present, economic and technological design criteria for products and processes should be matched with the minimization of environmental impact objectives. Manufacturing, material production, and product design are strictly connected stages. The choice of a production system over another could result in significant material and energy/resource savings, particularly if the component has been properly designed for manufacturing. In this scenario, Additive Manufacturing, which has been identified as a potential disruptive technology, gained an increasing interest for the creation of complex metal parts. The paper focuses on the tools, based on the holistic modelling of additive and …

Energy demandProduct designComputer scienceProcess (engineering)Additive Manufacturing020209 energy02 engineering and technologyLife Cycle AssessmentSustainability; Additive Manufacturing; Life Cycle Assessment; Energy demandIndustrial and Manufacturing EngineeringManufacturing engineeringResource (project management)SustainabilityControl and Systems EngineeringComponent (UML)Sustainability0202 electrical engineering electronic engineering information engineeringGeneral Earth and Planetary SciencesProduction (economics)Environmental impact assessmentLife-cycle assessmentGeneral Environmental ScienceProcedia CIRP
researchProduct

Flame-Retardant and Tensile Properties of Polyamide 12 Processed by Selective Laser Sintering

2022

This research was funded by the European Regional Development Fund within Measure 1.1.1.1 “Industry-Driven Research” of the Specific aid objective 1.1.1 “To increase the research and innovation capacity of scientific institutions of Latvia and their ability to attract external funding by investing in human resources and infrastructure” of the Operational Program “Growth and Employment” (Project No. 1.1.1.1/19/A/143). A.S. and A.Z. are grateful to funding received from the European Union Horizon 2020 Framework programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

tensile propertiespolyamide 12flame-retardant properties; vertical burn test; tensile properties; anisotropy; additive manufacturing; polyamide 12; selective laser sinteringCeramics and Composites:NATURAL SCIENCES::Physics [Research Subject Categories]vertical burn testanisotropyselective laser sinteringflame-retardant propertiesadditive manufacturingEngineering (miscellaneous)Journal of Composites Science
researchProduct

Mechanical Bistable Structures for Microrobotics and Mesorobotics from Microfabrication to Additive Manufacturing

2018

International audience; The use of mechanical bistable structures in the design of microrobots and mesorobots has many advantages especially for flexible robotic structures. However, depending on the fabrication technology used, the adequacy of theoretical and experimental mechanical behaviors can vary widely. In this paper, we present the manufacturing results of bistable structures made with two extensively used contemporary technologies: MEMS and FDM additive manufacturing. Key issues of these fabrication technologies are discussed in the context of microrobotics and mesorobotics applications.

Mesorobotics0209 industrial biotechnologyFabricationBistabilityComputer scienceMechanical bistable structuresContext (language use)NanotechnologyCurved beams[SDV.CAN]Life Sciences [q-bio]/Cancer02 engineering and technologyKey issuesFDM additive manufacturing01 natural sciences[SPI.AUTO]Engineering Sciences [physics]/AutomaticInformatique [cs]/Automatique020901 industrial engineering & automation[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering0103 physical sciencesMicrorobotics[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY][INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO][SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010301 acousticsMicroelectromechanical systems[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationMEMSMicrofabrication
researchProduct

Hedysarum coronarium-Based Green Composites Prepared by Compression Molding and Fused Deposition Modeling

2022

In this work, an innovative green composite was produced by adding Hedysarum coronarium (HC) flour to a starch-based biodegradable polymer (Mater-Bi®, MB). The flour was obtained by grinding together stems, leaves and flowers and subsequently sieving it, selecting a fraction from 75 μm to 300 μm. Four formulations have been produced by compression molding (CM) and fused deposition modeling (FDM) by adding 5%, 10%, 15% and 20% of HC to MB. The influence of filler content on the processability was tested, and rheological, morphological and mechanical properties of composites were also assessed. Through CM, it was possible to obtain easily homogeneous samples with all filler amounts.…

biocompositesTechnologyMicroscopyQC120-168.85FDMgreen compositesTQH201-278.5biopolymers3D printingnatural fillerEngineering (General). Civil engineering (General)ArticleMater-BiTK1-9971Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiDescriptive and experimental mechanicsgreen composites; biocomposites; FDM; biopolymers; Mater-Bi; natural filler; additive manufacturing; 3D printingGeneral Materials ScienceElectrical engineering. Electronics. Nuclear engineeringTA1-2040additive manufacturing3D printing Additive manufacturing Biocomposites Biopolymers FDM Green composites Natural filler Mater-BiMaterials; Volume 15; Issue 2; Pages: 465
researchProduct

Environmental modelling of aluminium based components manufacturing routes: Additive manufacturing versus machining versus forming

2018

Abstract Additive Manufacturing represents, by now, a viable alternative for metal-based components production. Therefore the designer, often, has to select among three options at process design stage: subtractive, mass conserving, and additive approaches. The selection of a given process, besides affecting the manufacturing step impact, influences significantly the impact related to the material production step. If the process enables a part weight reduction (as the Additive Manufacturing approaches do) even the use phase is affected by the manufacturing approach selection. The present research provides a comprehensive environmental manufacturing approaches comparison for components made o…

Sustainable manufacturing Environmental impact comparison Additive manufacturing Machining Forming Decision support tool0209 industrial biotechnologyEnvironmental analysisComputer scienceProcess (engineering)Strategy and ManagementProcess design02 engineering and technology010501 environmental sciences01 natural sciencesIndustrial and Manufacturing Engineeringlaw.invention020901 industrial engineering & automationMachininglawProcess engineeringSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneLife-cycle assessment0105 earth and related environmental sciencesGeneral Environmental ScienceSubtractive colorRenewable Energy Sustainability and the Environmentbusiness.industryForming processesSelective laser sinteringbusiness
researchProduct

Design of a wiper as compliant mechanisms with a monolithic layout

2020

The increasingly important need to design simpler structures, reducing the number of constituent components, has motivated the approach outlined in this paper which proposes an effective re-engineering example of a product belonging to the automotive industry, combining the advantages offered by the compliant mechanisms with production opportunities linked to the use of additive manufacturing. Take advantage of compliant mechanisms makes it possible to significantly improve the component's production phase, leading to undoubted benefits on the supply chain and on product’s time to market, benefits made possible by exploiting the outstanding characteristic of additive manufacturing to produc…

Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineComputer scienceCompliant mechanismCompliant mechanisms Monocomponent Wiper Additive ManufacturingMechanical engineeringGeneral Medicine
researchProduct

Green Composites Based on PLA and Agricultural or Marine Waste Prepared by FDM

2021

Three dimensional-printability of green composites is recently growing in importance and interest, especially in the view of feasibility to valorize agricultural and marine waste to attain green fillers capable of reducing bioplastic costs, without compromising their processability and performance from an environmental and mechanical standpoint. In this work, two lignocellulosic fillers, obtained from Opuntia ficus indica and Posidonia oceanica, were added to PLA and processed by FDM. Among the 3D printed biocomposites investigated, slight differences could be found in terms of PLA molecular weight and filler aspect ratio. It was shown that it is possible to replace up to 20% of bioplastic …

3D printing Additive manufacturing Aspect ratio Biocomposites Degradation Mechanical properties Opuntia ficus indica Polylactic acid Posidonia oceanica Water contact angle3d printed<i>Opuntia ficus indica</i>Materials sciencePolymers and PlasticsOpuntia ficusOrganic chemistry<i>Posidonia oceanica</i>mechanical propertiesengineering.materialBioplasticArticlechemistry.chemical_compoundQD241-441Polylactic acidFiller (materials)Composite materialpolylactic acidOpuntia ficus indicadegradationbiocompositeswater contact anglePosidonia oceanica3D printingGeneral ChemistryBiodegradationSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryengineeringDegradation (geology)aspect ratioadditive manufacturingPolymers
researchProduct